
Flights and Passengers

In this problem, you will be modeling passengers flying on an airplane.

Every time an airplane flies, that airplane has a particular flight number, and some number
of passengers. Each passenger has a particular type of ticket - for example, 'coach',
'economy', or 'business'. The passengers also might carry aboard some suitcases, and each
suitcase will have its weight recorded.

I've provided a class called Passenger, so you don't need to write that class. The
documentation for Passenger is as follows:

class Passenger
| A simple Passenger class
|
| Methods defined here:
|
| __init__(self, name, suitcase_weights, ticket_type)
| name - name of the passenger (string)
| suitcase_weights - a list of floats representing the weights of the
| Passenger's suitcases (list)
| ticket_type - a string representing the ticket type for this

Passenger
| (string)
|
| __str__(self)
| return a string representing this Passenger in the format:
| [name], flying [ticket_type] ([comma-separated suitcase weights])
| Example: Farah, flying coach (1.5,0.8,3.2)

The list of suitcase weights can be accessed by the instance variable suitcase_weights.
For example, if I have a Passenger p, I can get the list of that Passenger's suitcase
weights with p.suitcase_weights.

You will write a new class called Flight in the file flight.py. Flight should include an
initializer (constructor) that takes an integer parameter representing the flight number, and
a list of Passengers as an optional argument. If the argument is omitted, then an empty list
is assumed.

Write a method add_passenger that takes a Passenger parameter, and adds that
Passenger to the Flight.

Define the __str__ method for Flight so that it returns a string containing the flight
number and the Passenger information. For example, a Flight with flight number equal to
2, and two Passengers named Steve and Marta, might have a __str__ that returns:

Flight #2
---------------------------------------------



Steve, flying coach (2.2,3.1,3.0)
Marta, flying economy (1.1,2.6,1.0)

If there are no Passengers on the Flight, the output should say "No passengers", like this:

Flight #2
---------------------------------------------
No passengers

Finally, you will need to write a method heaviest_passenger that returns the Passenger
with the heaviest luggage sum, and a method lightest_passenger, which returns the
Passenger with the lightest luggage sum.

Raise exceptions in your code where appropriate. Feel free to define your own exception
classes.

Your code will be evaluated based on correctness, style, design, and documentation.


	Flights and Passengers

